domingo, 24 de abril de 2011

Função do 1° Grau

Nesta Pagina contem varias explicações da função o 1° Grau com boas exemplificações na pratica de uso para melhor esclarecimento. Assista também videos.

Todos com seus autores reconhecidos.

Uma função do 1º grau pode ser chamada de função afim. Pra que uma função seja considerada afim ela terá que assumir certas características, como: Toda função do 1º grau deve ser dos reais para os reais, definida pela fórmula f(x) = ax + b, sendo que a deve pertencer ao conjunto dos reais menos o zero e que b deve pertencer ao conjunto dos reais.
Então, podemos dizer que a definição de função do 1º grau é:

f: R→ R definida por f(x) = ax + b, com a R* e b R.

Veja alguns exemplos de Função afim.

f(x) = 2x + 1 ; a = 2 e b = 1

f(x) = - 5x – 1 ; a = -5 e b = -1

f(x) = x ; a = 1 e b = 0

f(x) = - 1 x + 5 ; a = -1 e b = 5
2 2

Toda função a do 1º grau também terá domínio, imagem e contradomínio.

A função do 1º grau f(x) = 2x – 3 pode ser representada por y = 2x – 3. Para acharmos o seu domínio e contradomínio, devemos em primeiro estipular valores para x.
Vamos dizer que x = -2 ; -1 ; 0 ; 1. Para cada valor de x teremos um valor em y, veja:

x = -2 x = - 1 x = 0
y = 2 . (-2) – 3 y = 2 . (-1) – 3 y = 2 . 0 - 3
y = - 4 – 3 y = -2 – 3 y = -3
y = - 7 y = - 5

x = 1
y = 2 . 1 – 3
y = 2 – 3
y = -1

Os valores de x são o domínio e a imagem e o contradomínio são os valores de y. Então, podemos dizer que Im = R.Estudo dos Sinais

Aplicação de uma função do 1° Grau

Exemplo 1

Uma pessoa vai escolher um plano de saúde entre duas opções: A e B.
Condições dos planos:
Plano A: cobra um valor fixo mensal de R$ 140,00 e R$ 20,00 por consulta num certo período.
Plano B: cobra um valor fixo mensal de R$ 110,00 e R$ 25,00 por consulta num certo período.

Temos que o gasto total de cada plano é dado em função do número de consultas x dentro do período pré – estabelecido.
Vamos determinar:
a) A função correspondente a cada plano.
b) Em qual situação o plano A é mais econômico; o plano B é mais econômico; os dois se equivalem.

a) Plano A: f(x) = 20x + 140
Plano B: g(x) = 25x + 110


b) Para que o plano A seja mais econômico:
g(x) > f(x)
25x + 110 > 20x + 140
25x – 20x > 140 – 110
5x > 30
x > 30/5
x > 6

Para que o Plano B seja mais econômico:
g(x) < f(x)
25x + 110 < 20x + 140
25x – 20x < 140 – 110
5x < 30
x < 30/5
x < 6

Para que eles sejam equivalentes:
g(x) = f(x)
25x + 110 = 20x + 140
25x – 20x = 140 – 110
5x = 30
x = 30/5
x = 6

O plano mais econômico será:
Plano A = quando o número de consultas for maior que 6.
Plano B = quando número de consultas for menor que 6.

Os dois planos serão equivalentes quando o número de consultas for igual a 6.

Exemplo 2

Na produção de peças, uma fábrica tem um custo fixo de R$ 16,00 mais um custo variável de R$ 1,50 por unidade produzida. Sendo x o número de peças unitárias produzidas, determine:

a) A lei da função que fornece o custo da produção de x peças;
b) Calcule o custo de produção de 400 peças.

Respostas

a) f(x) = 1,5x + 16

b) f(x) = 1,5x + 16
f(400) = 1,5*400 + 16
f(400) = 600 + 16
f(400) = 616

O custo para produzir 400 peças será de R$ 616,00.


Exemplo 3

Um motorista de táxi cobra R$ 4,50 de bandeirada mais R$ 0,90 por quilômetro rodado. Sabendo que o preço a pagar é dado em função do número de quilômetros rodados, calcule o preço a ser pago por uma corrida em que se percorreu 22 quilômetros?

f(x) = 0,9x + 4,5
f(22) = 0,9*22 + 4,5
f(22) = 19,8 + 4,5
f(22) = 24,3

O preço a pagar por uma corrida que percorreu 22 quilômetros é de R$ 24,30.

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

Função de 1º grau - Função - Matemática - Brasil Escola

Função Polinomial

Gráfico de função do 1º Grau

Inequação de 1º Grau
Resolução de inequações.

Inequações Produto e Inequações Quociente

Excelentes sites para aprender matematica.

http://matematicapratica.com

http://brasilescola.com

teste livros